

- Magnet lattice and optics highlights
- Project highlights and Lessons Learned
 - Magnets and supports
 - Beam stability
 - Injector
 - SR Injection
 - Vacuum system
 - General comments
- Conclusion

CNPEM Campus

Brief timeline overview

Key Performance Parameters

Parameter	Today (Phase 0)	Phase 1
Beam energy	3.0 GeV	3.0 GeV
Current	100 mA	350 mA
Injection mode	decay	top-up
Beam stability	\gtrsim 10% σ_x \gtrsim 40% σ_y	< 10% σ
Beamlines (in oper.)	6	14

Critical systems	Today (Phase 0)	Phase 1
RF cavities	Petra7 (1)	SRF (2) + 3HC (1)
RF power	120 kW	480 kW
Orbit feedback	SOFB	SOFB, FOFB, FF
BbB feedback	H, V, L	H, V, L
Undulators	Commis. APUs	IVU, hybrid, Apple-II

- Phase0: completed by end of 2021
- Phase1: Funding approved → mid 2024

- Magnet lattice and optics highlights
- Project highlights and Lessons Learned
 - Magnets and supports
 - Beam stability
 - Injector
 - SR Injection
 - Vacuum system
 - General comments
- Conclusion

Main Parameters

Storage Ring parameters			
Beam energy	3.0 GeV		
Circumference	518.4 m		
Lattice	20 x 5BA		
Current, top up	350 mA		
Hor. emittance (bare → w/ids)	250> 150 pm.rad		
Emittance ratio	3 %		
Lifetime	10 h		
Betatron tunes (H/V)	49.107 / 14.13		
Natural chrom. (H/V)	-119.0 / -81.2		
Energy spread (rms)	0.85 x 10 ⁻³		
RF frequency	500 MHz		
Harmonic number	864		
Straight section free length, low β / high β	5.8 m / 6.5 m		

Booster parameters				
Circumference	496.8 m			
Emittance @ 3 GeV	3.5 nm.rad			
Momentum compaction	7.2 x 10 ⁻⁴			
Lattice	50 FODO			
Cycling frequency	2 Hz			

SR Elements	# in SR	Max. strength
Dipoles	80	0.56 T
Superbend	20	3.2 T
Quadrupoles	270	45 T/m
Sextupoles	280	2400 T/m ²
Hor. Corrs (slow/fast)	120/80	350/30 μrad
Ver. Corrs (slow/fast)	160/80	350/30 μrad
Skew Corrs	90	0.1 T
BPMs	160	-

Magnet Lattice and Optics

- 20 5BA arcs
 - 5 high β_x straight sections matching with quad doublets.
 - 15 low β_x straight sections matching with quad triplets.
- At low β_x sections ($\beta_x \approx \beta_y \approx 1.5$ m):
 - Matching of e⁻ and photon beam phase spaces for undulators
 - Small H and V beam stay clear
 - Small ID perturbation on optics
- 20 permanent magnet superbends
 - optical functions matched to reduce emittance
 - sharp peak field of 3.2 T in the center $\rightarrow \varepsilon_c$: 19.2 keV
 - Beam size: 9.6 x 3.6 μm²

- Magnet lattice and optics highlights
- Project highlights and Lessons Learned
 - Magnets and supports
 - Beam stability
 - Injector
 - SR Injection
 - Vacuum system
 - General comments
- Conclusion

Storage Ring Magnets

- Magnets assembled and aligned on girders "by design" (no adjustable supports)
- Quadrupoles with trim coils and sextupoles with CH, CV and QS coils
- In-house produced permanent magnet dipole with thin superbend (3.2 T) in the center

PM superbend

Supports

- Integrated optimization of the whole system: magnets, girders, position adjustment pads, concrete base
- Very rigid girder, all machine components aligned by construction
- Very high first mode vibration frequencies

1st Vert. mode: 268 Hz

1st Horiz. mode: 152 Hz

Orbit Stability

- Integrated optimization efforts to minimize mechanical vibrations resulted in good orbit stability
- Main orbit perturbation at mains frequency of 60 Hz
 - Sources under investigation
 - Within FOFB attenuation range (FOFB not operational yet)
- Horizontal plane → orbit stability slightly larger than target of 10% σ_{x}
- Vertical plane \rightarrow orbit stability about 40% σ_{v}

Injector

- The effect of revolution frequency (f_0) change during acceleration is generally negligible in electron synchrotrons with large α_c .
- For small α_c , since the booster RF frequency (f_{RF}) is fixed (locked to the SR), the mismatch between f_{RF} and f₀ along the ramp results in a non-negligible energy deviation δ
- On-energy operation either at low energy or high energy

$$E_{inj} = 150 \text{ MeV}$$

$$E_{final} = 3 \text{ GeV}$$

$$\alpha_c = 7.2 \times 10^{-4}$$

$$\delta = 0.8\%$$

$$<\Delta x_{BPM} > \approx 2 \text{ mm}$$

 Booster realignment was necessary to match the circumference at injection energy, where most losses occurred during the energy ramp

Storage Ring Injection

- On-axis injection for commissioning using a dipole kicker, DipK
- Off-axis injection for beam accumulation using NLK

- Bessy-type NLK
 - Single piece ceramic chamber
 - Machined grooves for wire positioning
 - Future test: residual field compensation using current shunts

- Initial plans were to modify DipK into a horizontal pinger after commissioning → weaker and shorter pulse width
- It turns out that on-axis injection has proved to be very useful after maintenance periods
- Having the on-axis injection scheme as an option is very useful to speed up machine recovery

Vacuum System

Fully in-house NEG-coated chambers with in-situ baking

Vacuum System

- SIRIUS is based on fully NEG-coated vacuum chambers
 - Fast conditioning. For SIRIUS, the design dynamic pressure of 3×10^{-12} mbar/mA was achieved with a beam dose of 60 A.h
 - Foresee additional pumping close to large areas without NEG (such as cavities and diagnostics components).
 Degassing from such areas can saturate the nearby NEG coating
- Neon venting for vacuum interventions
 - Until now, no NEG-coated vacuum chamber of SIRIUS arcs had to be reactivated
 - For machines based on NEG coating, it is important to foresee ports and flanges for Neon venting during design phase

Normalized average dynamic pressure rise vs beam dose

Pump down curve after vacuum intervention with Ne venting

General Comments

- Cabling: dedicated team instead of sharing responsibility between different groups
- Accelerators and beamlines development standardization → cost reduction and easier maintenance.
 E.g.: motors, cameras, interlock systems, data acquisition systems, archiving systems, etc
- Development of equipment testing protocols (BPM electronics, power supplies, etc) to help debugging
- Foresee equipment production completion well ahead installation to allow for burn-in and long-term tests. Important for BPMs, power supplies, in-vacuum motion systems (e.g. scrapers)
- Implement automatic testing of commercial equipment IOCs with a network setup similar to the final one → continuous variable monitoring to improve debugging
- SIRIUS accelerator interlock system required many unmapped expansions → system already near full capacity
- Infrastructure related to control system software (software management, e.g. docker, ansible, standardization of servers structure, database, etc) took longer than expected → dedicated team could speed-up subsystem integration

- Magnet lattice and optics highlights
- Project highlights and Lessons Learned
 - Magnets and supports
 - Beam stability
 - Injector
 - SR Injection
 - Vacuum system
 - General comments
- Conclusion

Lessons Learned - Conclusion

- Integration between machine and beamline teams.
- Integration between all subsystems teams.
- Documentation and accessibility to latest project parameters.
 - Good experience with collaborative documentation of latest project parameters in the web-based wiki platform. wiki-sirius.Inls.br
- Thorough testing of critical equipment.
- Be prepared to solve unexpected problems, fix equipment and make modifications quickly.
- State-of-the-art diagnostics and flexible tools to test accelerator physics models are available today \rightarrow personal experience in commissioning UVX and SIRIUS \rightarrow commissioning of SIRIUS was smoother!
- Celebrate milestones reached!

Thank you for your attention!

