Collective Effects in the Diamond-II Storage Ring

Teresia Olsson

on behalf of the Diamond-II team

LEL 2022 – 3rd Workshop on Low Emittance Lattice Design June 26-29 2022

Lattice Parameters

Diamond-II Storage Ring

- The machine will operate at 300 mA as the existing ring.
- The ring includes 30+ insertion devices →
 significant change of the lattice parameters between
 fully opened and fully closed.
- The ring will operate with harmonic cavity to:
 - Increase Touschek lifetime
 - Reduce intra-beam scattering
 - Mitigate instabilities

Effect of intra-beam scattering

HC according to flat potential conditions

	Open IDs	All IDs closed
Energy [GeV]	3.5	
Circumference [m]	560.	561
Harmonic number	93	34
RF frequency [MHz]	499.	511
Tune (h/v)	54.15/	/20.27
Chromaticity	2.0/	/2.3
Momentum compaction	1.04·10 ⁻⁴	
Nominal current [mA]	300	
RF voltage [MV]	1.42 2.53	
Equilibrium emittance [pm rad]	161.7	121
Energy spread [%]	Energy spread [%] 0.094	
Energy loss/turn [MeV]	0.723	1.68
Damping times (h/v/l) [ms]	9.7/18.1/16.0	5.7/7.8/4.8
Nominal bunch length [ps]	12.5 ps	11.7 ps
Lifetime [h] (0.6 nC, nat. bunch length, 8 pm vertical emittance, after simulated commissioning corrections)	2.15 ± 0.1	2.33 ± 0.1

Impedance Database

More details: R. Fielder, H.-C. Chao and S. Wang, "Single Bunch Instability Studies with a new Impedance database for Diamond-II", IPAC2022, Bangkok, Thailand, WEPOMS011

Organisation and Simulations

- All impedance information stored in an impedance lattice (Accelerator Toolbox structure)
 - Apertures, materials, paths to files etc.

Apertures with closed collimators and fully closed in-vacuum IDs

- Tracking simulations in Elegant to include as many effects as possible self-consistently
 - Lumped impedance at 1 point except for injection tracking \rightarrow 24 points.
 - Interface to generate input files from impedance lattice with normalisation with local beta in transverse planes.
 - Intra-beam scattering not included self-consistently yet.

Impedance Contributions

Courtesy of Richard Fielder

Resistive-wall:

- Majority NEG coated (1 μm, 1e5 S/m as worst case).
- Dipole vessel for photon extraction of aluminium with ante-chamber design.
- Impedance calculated with ImpedanceWake2D.
 Rectangular Yokoya factors used for ID chambers.

Geometric:

- Simulations in CST using PEC. So far with 3 mm bunch length, but in progress to reduce to 1 mm.
- Main RF cavities NC instead of SC as in existing ring → EU HOM damped.
- Total 252 BPMs (one included in dipole vessel) with updated design.
- New flange design using copper gasket to avoid gap.
- Six collimators: horizontal gap: 7 mm, vertical gap: 3 mm.
- Updated design of transverse multibunch feedback (TMBF) striplines.

Material	Length (m)	Conductivity (S/m)
Steel	42.02	1.35 e6
Copper	51.85	5.96 e7
Aluminium	96.00	3.77 e7
NEG-coated copper	336.36	1.00 e5, 5.96 e7
NEG-coated aluminium	31.73	1.00 e5, 3.77 e7
Ti-coated alumina	2.60	2.38 e6, 0.00
Total	560.56	

Component	Neural on in vinc	Loss factor	Hor. kick factor	Ver. kick factor
Component	Number in ring	(V/pC)	(V/pC/mm)	(V/pC/mm)
BPM1 assembly	48	0.0806	-0.0298	-0.0127
BPM2 assembly	48	0.0210	-0.0046	-0.0050
BPM4 assembly	48	0.0383	-0.0109	-0.0125
BPM5 assembly	12	0.0690	-0.0304	-0.0058
BPM6 assembly	48	0.0414	-0.0118	-0.0119
Dipole vessel	47	0.117	-0.195	-0.0301
Visible Light Extraction	1	0.176	-0.322	-0.0356
Flange	492	0.00003	0.0001	-0.0002
Main RF cavity	8	1.186	0.0011	-0.0001
Hor. TMBF stripline	1	0.0821	-0.0056	-0.0126
Ver. TMBF stripline	1	0.0821	-0.0126	-0.0056
Valve	96	0.0427	-0.0012	-0.0059
Screen	2	0.023	-0.0027	-0.0029
Ver. collimator	3	0.2843	-0.1991	-1.0070
Hor. collimator	3	0.2679	-0.2095	-0.0580
Injection stripline	4	0.2463	-0.0173	-0.1008
Total		21.222	-14.324	-7.976

Total Impedance

Courtesy of Richard Fielder

Contribution to kick/loss factors

Beta-weighted impedance

Harmonic Cavity

Harmonic Cavity Choice

- Different choices considered but need to choose existing design due to human resources and time constraints.
- Third order cavity chosen because of availability of 1500 MHz cavities and good bunch lengthening.
- Passive NC: Unstable unless low total R/Q → no suitable cavity design for Diamond-II parameters.
- Passive SC (CEA Super-3HC): sufficiently low total R/Q to avoid instabilities
 + lengthening at lower currents too.
- Active NC (ALBA cavity): unstable unless high power coupling (β > 10)
 → high power consumption. Still does not solve problem with transient beam loading.
 - Reason: main cavities have significant contribution to transient beam loading due to large total R/Q.

Requirements for flat potential conditions at 300 mA for third order HC

	Open IDs	All IDs closed
RF voltage [MV]	1.42	2.53
Harmonic voltage [kV]	398.270	597.665
Tuning angle [°]	-103.124	-110.608
Shunt impedance [M Ω]	3.26	3.14
Bunch lengthening for uniform fill (RMS) [times]	3.9	4.2

Cavity parameters

	Main	Harmonic
Туре	EU HOM damped	CEA Super-3HC
Number of cavities	8	1
Cavity harmonic	1	3
Shunt impedance $[\Omega]$	$3.94 \cdot 10^6$	1.77·10 ¹⁰
Q factor	33 000	2·10 ⁸
R/Q per cavity	119.5	88.4
Total R/Q [Ω]	956	88.4

Passive superconducting cavity of the CEA Super-3HC type

Periodic Transient Beam Loading

- Beam loading does not reach steady-state even for uniform fill but periodic variations in centroid and length with time.
- Behaviour described for HALF also seen in simulations for Diamond-II
 - Centroid distribution presents as longitudinal coupled-bunch mode 1
 - Can be very long period (tracking of millions of turns might be required)
 - Independent of radiation damping
 - Mitigated by lower HC R/Q, higher RF voltage or tuning the HC further out
 - Impedance helps to stabilise the beam so the HC can be tuned in further
- Efforts to maximise bunch lengthening (close to uniform fill, small charge variation, tuning cavity beyond flat potential etc.) increases risk of PTBL → for Diamond-II more often limitation rather than Robinson instability.
- Seen for both passive NC and passive SC HC but higher threshold for SC case due to lower total R/Q.

Example for uniform fill:

Fill Patterns

More details: T. Olsson and H.-C. Chao, "Fill Pattern for Reducing Transient Beam Loading and Ion-Trapping in the Diamond-II Storage Ring", IPAC2022, Bangkok, Thailand, TUPOMS031

Fill Pattern Requirements

- Standard mode: 300 mA
 - Requirements only given by machine: transient beam loading + ion instabilities
 - Existing ring operate with 900 bunches + single gap of 74 ns \rightarrow bad for transient beam loading
 - Avoid increasing the bunch charge too much since affects lifetime → rules out uniform fills → need to operate with bunch trains with gaps between.
- Hybrid mode: 300 mA
 - Users request hybrid mode similar to operated in existing machine for timing experiments: 3 nC hybrid bunch in middle of long gap
 - Transient beam loading major concern → other options to increase lifetime might have to be considered, e.g. increasing vertical emittance or reducing current.
 - Also looking at other options than hybrid mode:
 - Pulse Picking by Resonant Excitation (PPRE)
 - Pseudo Single Bunch (PSB)
 - Transverse Resonance Island Buckets (TRIBs)

Current gap requirements

Beamline	Gap requirement around hybrid bunch
1	250 ns before and after
2	70 ns before, unspecified after
3	150 ns before and after for Dectris detector 20 ns before and after for Timepix or Tristan

Transient Beam Loading

- Additional gaps helps up to the point where the bunch length no longer increases
 → lifetime gain decreases due to higher bunch charge.
- Simulations for all IDs closed including 8 NC MCs with RF feedback, SC HC and longitudinal impedance.

Future option to add guard bunches/compensated gaps but not included so far in favour of less complex fill pattern.

Example with 5 gaps of 10 buckets

Ion Instabilities

- Critical mass number: where ions trapped for uniform fill.
- CO, CH₄, CO₂ trapped at 300 mA, H₂ trapped below 50 mA.

Critical mass number for 8 pm vertical emittance

Distributed pressure profile

Simulation setup:

- Electrons: macroparticles tracked in 6D along lattice.
- Ions: macroions generated at specified interaction points representing line density between points
- 97 interaction points based on critical mass number
- Distributed pressure profile for 100 Ah conditioning with unsaturated NEG.
- So far Gaussian distribution assumed for both electron and ions when calculating the kicks.

All IDs closed, 8 pm vertical emittance

- For same number of bunches better ion-clearing with several short gaps instead of single long one → better to operate with several short bunch trains.
- Next steps: include charge variation, transverse impedance, multiple ionisations and multibunch feedback.

Standard Mode

• Fill pattern with 5 gaps of 7 buckets chosen → fits well with maximum train from booster if using multibunch injection.

	Open IDs	All IDs closed
Total time/phase shift [ps/°]	55.7/10.0	41.0/7.4
Bunch length (RMS) [ps]	48.4 ± 3.2	48.0 ± 3.9
Lifetime gain rel. nom. [times]	3.7 ± 0.4	3.8 ± 0.4

Variation at different top-up conditions (time between injections, charge per shot)

Charge variation below 5% preferable.

Ion instabilities

Ion instability growth rate within expected magnitude possible to damp with feedback.

Instabilities

More details: R. Fielder, H.-C. Chao and S. Wang, "Single Bunch Instability Studies with a new Impedance database for Diamond-II", IPAC2022, Bangkok, Thailand, WEPOMS011

S. Wang, H.-C. Chao, R. Fielder, I. P. S. Martin and T. Olsson, "Studies of Transverse Coupled-Bunch Instabilities from Resistive-Wall and Cavity Higher Order Modes for Diamond-II", IPAC2022, Bangkok, Thailand, WEPOMS010

Single Bunch Thresholds

Courtesy of Siwei Wang

- Tracking results benchmarked against analytic formulas with good agreement.
- Harmonic cavity included as flat potential to be able to scan the current.

Longitudinal

Transverse

Standard mode bunch current = **0.33 mA**Hybrid bunch aim = **1.6 mA**

Green = okay for both modes

Red = not okay for hybrid mode

	Microwave	TMCI (chromaticity 0)		Head-tail at chromaticity +2	
		Horizontal	Vertical	Horizontal	Vertical
Open IDs	2 mA	1.0 mA	1.5 mA	> 5 mA	> 5 mA
All IDs closed	2.5 mA	0.75 mA	0.75 mA	3 mA	3.25 mA
All IDs closed + FP HC	> 5 mA	0.5 mA	0.5 mA	> 5 mA	4.75 mA

Coupled-Bunch Instabilities

Courtesy of Siwei Wang

- Transverse resistive-wall instability expected to be strongest coupled bunch instability.
- Studies of growth rates to understand behaviour and impact of different parts of the impedance.
- Good agreement between tracking and analytic formula for uniform fill with chromaticity 0.
- Estimated thresholds from growth rate agree with tracking including radiation damping.

Uniform fill

Uniform fill, cl		Radiation damping rate (/s)	Largest growth rate (/A/s)	Estimated threshold (mA)
On on IDs	Horizontal	103.5	1622	63.8
Open IDs	Vertical	55.2	3390	16.3
Classed IDs	Horizontal	176.7	6993	25.3
Closed IDs	Vertical	128.5	10505	12.2

Growth Rate with Chromaticity

Courtesy of Siwei Wang

- Drive/damp measurement in existing ring
 - Drive the beam with specific mode frequency and measure natural damping.
 - Damping rate fitted from IQ data.
 - Shift of curve with chromaticity. Different behaviour for positive and negative chromaticity.
- Simulation with Diamond-II impedance model
 - Including long + short wake + radiation damping.
 - Similar trend as the experiment.
- Initial observations:
 - Long range wake: shrink of curve vs chromaticity
 - Radiation: larger damping rate for higher absolute value of chromaticity
 - Short range wake: difference between positive and negative chromaticity

Diamond-II: 100 mA, closed IDs, uniform fill, long + short range wake + radiation damping

Measurement in existing ring

Emittance Feedback

More details: S. Preston, T. Olsson and B. Singh, "Emittance Feedback for the Diamond-II Storage Ring Using Resonant Excitation", IPAC2022, Bangkok, Thailand, TUPOMS035

Emittance Feedback

- Existing ring has vertical emittance feedback based on skew quadrupoles → affects injection efficiency and lifetime.
- New feedback based on exciting the beam at a synchrotron sideband \rightarrow idea from PPRE.
- Tests are ongoing in existing ring together with benchmarking against simulations.

Courtesy of Shaun Preston

Conclusion: important to include impedance in simulation.

Best excitation frequency: large ratio between size and oscillation → upper sideband.

Lessons Learned

Lessons Learned

- Increasing demand on computer resources for collective effects simulations
 - Impedance calculations with short bunch length (high frequency content) + long wake (narrow resonators)
 - Injection tracking more important → distributed impedance + element-by-element tracking + different error seeds
 - Self-consistent simulations of instabilities including harmonic cavity
 - Ion instabilities (very resource demanding!)

Diamond: 960 cores only for the AP group + extra cluster resources at RAL but still often bottleneck when simultaneously high demand for single-particle tracking \rightarrow code development needed to push the execution time.

- "Periodic transient beam loading" instability must be better understood → currently limiting the use of normal conducting harmonic cavities.
- New ways must be developed to serve timing users → hybrid modes are no longer feasible without compromises to the machine performance.
- The new machines offer better opportunities for benchmarking between simulations and measurements due to better developed impedance models.

Thank you!

Backup slides

Hybrid Mode

- Depending on gap length it might be favourable to operate with several multibunch trains.
- For long gaps no lifetime gain by tuning in HC more → better to operate less tuned in.

All IDs closed, nominal HC detuning

HC detuning [kHz]

All IDs closed, 1 multibunch train

