

DETERMINISTIC DESIGN OF MULTIBEND HOA LATTICESBettina Kuske, Paul Goslawski

LAL 2022, Barcelona, June 28th, 2022

Stop fishing in the dark

THE CHALLENGE OF LATTICE DESIGN

3rd generation light sources Bessy II

2 dipoles

9 quadrupoles

7 sextupoles

19 drifts

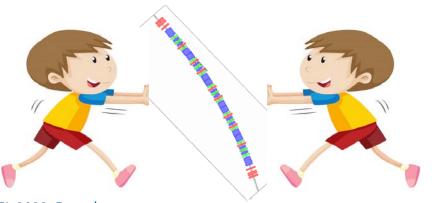
Consider symmetry

=> 20+ parameters to optimize

4th generation light sources

Bessy III

6 dipoles


10 reverse bends

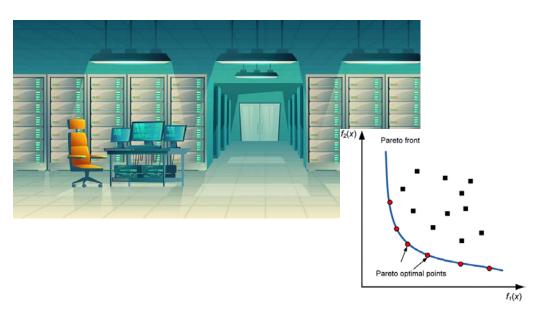
24 quadrupoles

19 sextupoles, octuples?

~ 50 drifts

=> too many parameters to handle

OPTION A: Take existing lattice and push towards own needs and demands



OPTION B: Use Multi-Objective Genetic Algorithms

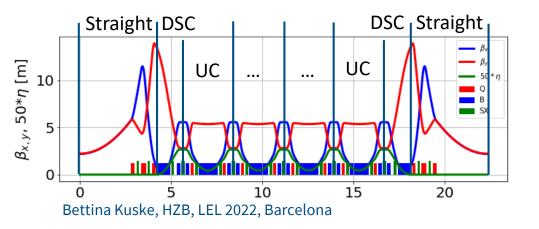
Both methods show good results, but:

You don't know how close you are to the optimum. There always *might* be an even better solution.

HZB approach: Deterministic Lattice Design

- 'LEGO'-approach: Optimize smaller, generic subsections of the lattice individually Cuts down on the number of parameters
- Understand basic functionalities of elements in subsections

 Why a reverse bend? Combined function or separate function magnets? How to order the magnets?
- Deviation from strict 'LEGO' approach, asymmetries, injection straights, super bends ...
 - all regarded as perturbations from the generic baseline lattice that do not alter the basic design choices


The layout of the talk

- Premises, goals, and limitations
- Optimization of the unit cell
- Optimization of the dispersion suppression cell
- Focusing towards the straight section
- First look at non-linearities
- Summary

Premises:

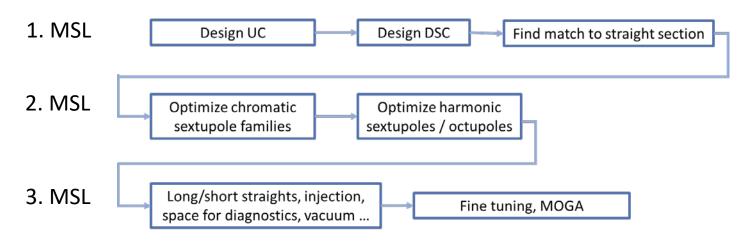
- Multi-bend achromatic structure repetitive unit cell, dispersion suppression cell, straight section
- RB Reverse bend
 reduces emittance
 decouples dispersion from betas
 reduces length
- HOA higher-order achromat
 Obey certain phase advance rules
 to cancel out 2nd and 3rd order
 driving terms

Goals:

- 2.5 GeV
- Diff. limited at 1keV
- Low emittance 100pm
- Moderate, positive α ~1e-4
- At least 16 straights
- 5.6m long straight sections
- Equal betas in straight, <3m

Limitations:

- Short circumference ~350m
- 'Off-the-shelf' technology (included from the beginning):

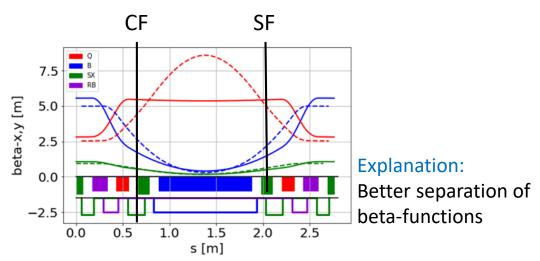

Bends: 1.3T

Gradient: 80T/m

Sextupoles: 4000T/m²

Drifts: 0.10m

 Homogeneous bend radiation for PTB (few bends for main stack holder)


The uniqueness of Unit Cell:

- Fix β_x , η at center, $\alpha_{x,y} = 0 2$ gradients => **unique solution**
- 2 phase advances (HOA) 2 gradients => unique solution
- Freedom in dispersion by RB

Magnetic set up of the Unit Cell:

6 magnet permutations

- a) include QD into the main bend or not (CF/SF)
- b) place the RB or SF at the outside
- c) (SF-UC) place QD or SD next to the central dipole

	Bend	UC type	ϵ	ξ_x	ξ_y	\mathbf{SF}	SD
						$[1/m^{2}]$	$[1/m^{2}]$
1	\mathbf{CF}	SF last	96	-0.69	-0.37	-25.1	19.6
2	\mathbf{CF}	RB last	96	-0.81	-0.27	-25.5	20.0
3	SF	SF last	94	-0.75	-0.28	-17.8	10.2
		SD central					
4	\mathbf{SF}	RB last	94	-0.85	-0.22	-27.5	16.4
		SD central					
5	\mathbf{SF}	SF last	96	-0.75	-0.29	-18.6	15.4
		QD central					
6	\mathbf{SF}	RB last	97	-0.82	-0.25	-26.0	22.3
		QD central					

For similar emittance and horizontal chromaticity, the SXstrength to compensate chromaticity can vary by a factor of >2! SF-UC has 40-50% lower SX-strength than CF-UC.

Higher-Order Achromat condition for Unit Cell:

- Condition on phase advance in UC: $\phi_{x,y}/n = N \qquad \text{n: number of UC, N: lower integer}$
- Prerequisite for large mom. acceptance and large aperture

- Natural phase advance $\phi_x \sim 0.4$, $\phi_x \sim 0.1$
- $\phi_x \sim 0.5$ not achievable
- $\phi_x \sim 0.33$ longer cell/higher emittance
 - ⇒ Need to build 6-bend
- 18, 20 super periods exceed circumference
 - \Rightarrow Need to build 16 SP

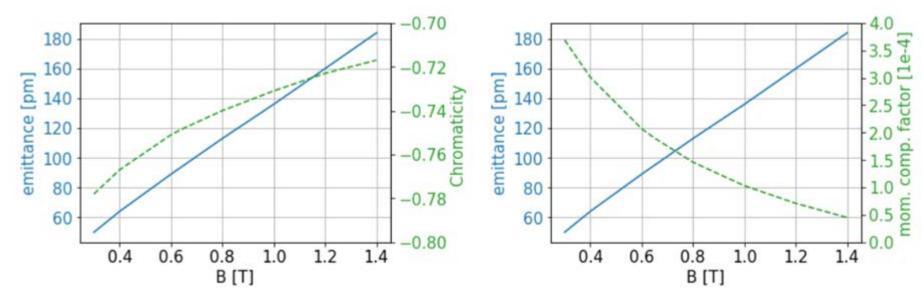
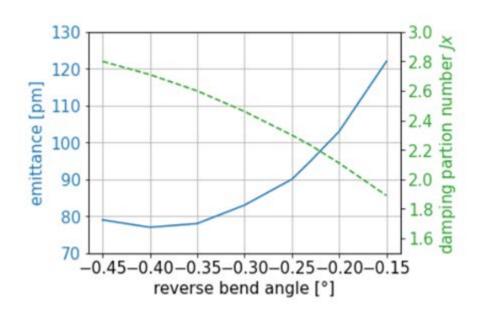

But: How to reach 100pm? Need to optimize dipoles!

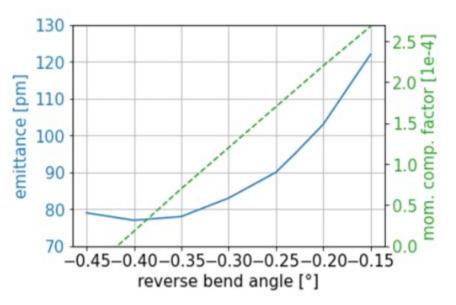
Table 2: Summary of Lattice Options.

SP	bends per SP	θ [°]	$\phi_x/2\pi$ HOA	β_0 [m]	$\varepsilon[\mathbf{pm}]$ $@\eta = 0.004$
	7	3.75	0.33	0.66	271
16	6	4.5	0.40	0.40	246
	5	5.625	0.50	-	-
	7	3.67	0.33	0.64	215
18	6	4.0	0.40	0.39	196
	5	5.0	0.50	-	-
	7	3.0	0.33	0.63	176
20	6	3.6	0.40	0.39	162
	5	4.5	0.50	-	-

The conditions on the phase advance per unit cell is the strongest restriction in the design of the UC. Only a 16-period 6-MBA is feasible for BESSY III. (more bends show higher emittance due to necessarily larger β , η in dipole)

Field strength of main dipole: Change field/length of the dipole, fit HOA-condition (QD, QF), plot ε , ξ , α

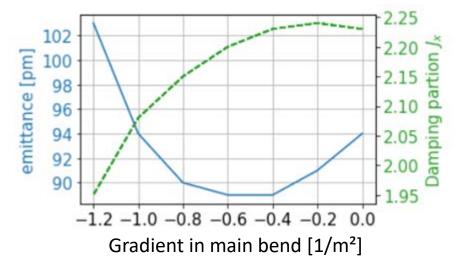



The emittance decreases by >70% for $\Delta \xi \sim 8\%$! α : $0.5 \ 10^{-4} \ -> \ 3.7 \ 10^{-4}$

Need α in UC ~2e-4 => $B \sim 0.6T$, L = 1.0m

Plus: Long dipoles relax the focusing - TME conditions: $\beta_{TME} = \frac{L}{\sqrt{15}}$ $\eta_{TME} = \theta \frac{L}{6}$ $\epsilon_{TME} \propto \theta^3 \frac{2}{3\sqrt{15}}$

Field strength of reverse bend: Change displacement of RB/QF, fit HOA-condition (QD, QF), plot ε , α , J_x



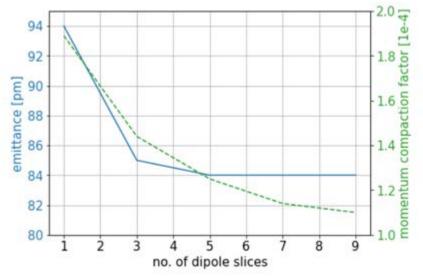
The emittance decreases by >60%, but: α : 2.7 10^{-4} -> 0.4 10^{-4} Jx increases because Jx(main bend) decreases

Keeping α ~ 2e-4 limits the RB displacement (as well as technical limits) => RB ~ 0.225T

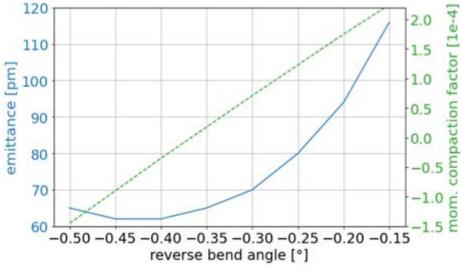
Combined function magnet - revisited: Increase gradient in main bend, fit HOA-condition (QD, QF), plot $J_x \varepsilon$

Damping partition number:

$$J_x = 1 - \int_0^C \frac{\eta}{\rho} + 2k\eta\rho \,ds$$

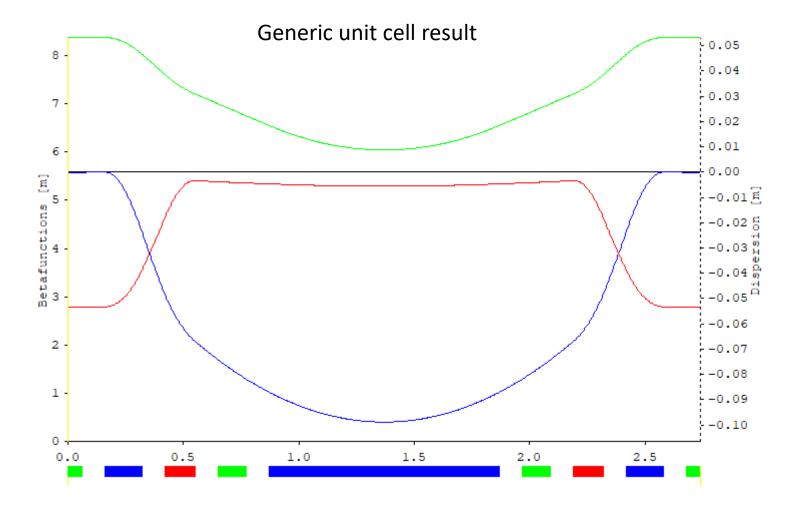

The damping partition number of the UC decreases (!) with raising gradient in the main bend.

Why? The contribution to J_x of the gradient is small compared to that of RB. (~0.3 per dipole, ~160 per RB) The smaller field of QD leads to a smaller η and k of RB.


The benefit of a gradient dipole is therefore disputable when an RB is used.

Longitudinal gradient bend:

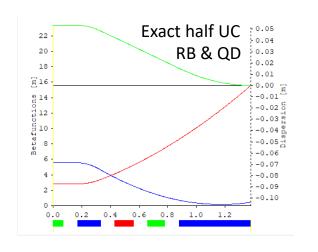
Split main bend into slices, optimize field distribution with OPA, fit HOA-condition (QD, QF), plot ε , α . For 3 slices, vary RB field.

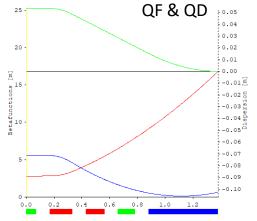


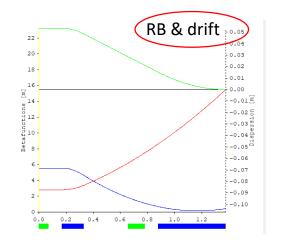
 eta_0 is fixed by the phase advance η_0 is fixed by the RB More slices for fixed RB field don't help

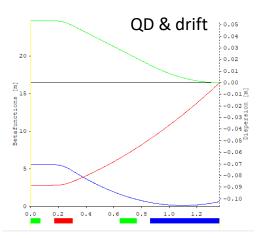
50% emittance gain for increased RB field. Limited by decreasing α .

RESULT FOR THE UNIT CELL


L [m]	2.76
θ [°]	4.0
$\theta_{\sf abs}$ [°]	4.92
ε [pm]	95
ϵ_{TME} [pm] (main bend only)	93
α	1.90e-4
ξ _{x,} ξ _y	-0.75, -0.28
$J_{x_{r}}J_{y}$	2.23, 1.0
β_{x0} , β_{y0}	0.4, 5.4
η_0	0.0088

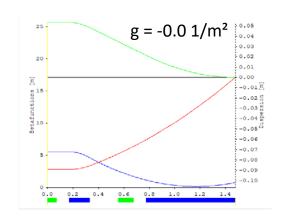

Dispersion Suppression Cell:

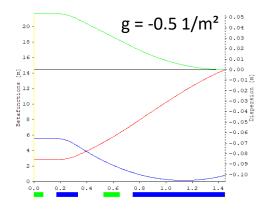

- Guideline: As close as possible to half unit cell to keep phase between SX
- Boundary conditions unit cell & η , $\eta' = 0 => 2$ parameters for fitting => unique solution

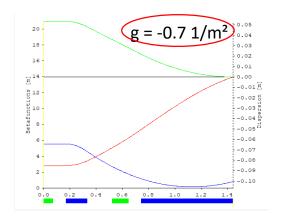

	emittance [pm]	$\alpha~[10^{-4}]$	$RB/QF [1/m^2]$	$QD [1/m^2]$	drift [m]
RB and QD	172	0.72	6.77	0.13	0.1
QF and QD	272	2.23	7.26	0.14	0.1
RB and drift	172	0.72	6.85	20	0.33
QF and drift	273	2.26	8.98	-	0.34

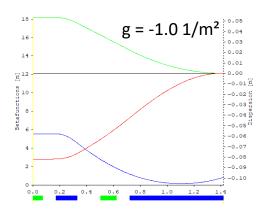
β-functions are similar, emittance lower with RB, QD has a negligible (positive!) gradient

Effect of a gradient in DSC-dipole:

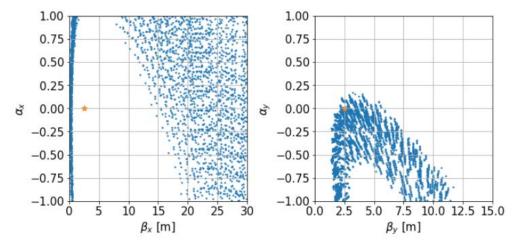

- Homogeneous bend for PTB in UC
- Increase length to 70cm (technical feasibility)

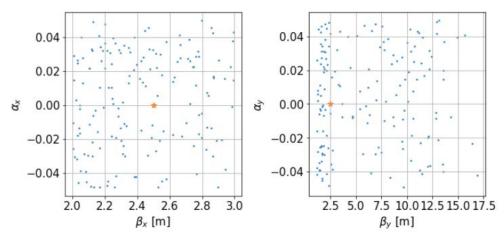

gradient $[1/m^2]$	emittance [pm]	$\alpha \ [10^{-4}]$	$ m RB \ [1/m^2]$	ML1B/UL1 [m]	ξ_x	ξ_y
0.0	127	0.41	6.86	0.23/0.00	-1.41	-1.08
-0.5	121	0.42	7.17	0.20/0.04	-1.45	-0.88
-1.0	116	0.43	7.49	0.18/0.11	-1.51	-0.72
-1.5	111	0.43	7.82	0.15/0.23	-1.55	-0.61


The gradient lowers the emittance (no conditions on phase advance) and $\beta_y,\,\alpha_y$ towards straight => lower chromaticity


(For the calculation of lpha and ξ , the contribution of a generic triplet is taken into account.)

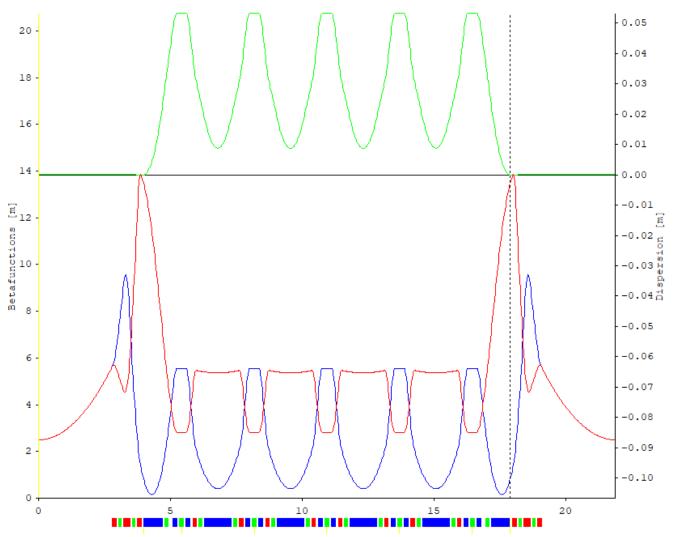
$$L_{B} = 0.7 m$$




MATCHING TOWARDS THE STRAIGHT SECTION

Use numerical scan:

- Boundary condition of DSC, and straight section
- Scan over drift lengths and gradients
- Analyze results graphically
- Select solutions close to $\beta_{x,y} = 2.5 \text{m}$, $\alpha_{x,y} = 0$
- Some re-fitting with optics program
- Try doublet: 2 gradients, 2 drifts
- Try triplet: 3 gradients, 3 drifts


Doublet: No solution for β_x

Triplet: Chose the appropriate solution, f.e lowest chromaticity

The composition of LEGO Blocks now yields a baseline lattice, that fulfills all demands => First milestone lattice

L [m]	350.06
Q_x/Q_y	44/13
ε [pm]	101
α	1.17e-4
ξ_x / ξ_y	-95, -44
J_x/J_v	2.06, 1.0

Chromaticity compensation – 2 chromatic sextupole families:

No harmonic sextupoles, no octupoles

	-	
CrX lin	0.00	-0.03
CrY lin	0.00	0.01
Qx	Н21000	5.45
3Qx	H30000	2.00
Qx	H10110	4.84
Qx-2Qy	H10020	14.86
Qx+2Qy	H10200	3.37
2Qx	H20001	2.48
2Qy	H00201	0.64
Qx	H10002	0.03
CrX sqr	0.00	191.40
CrY sqr	0.00	46.13
dQxx	0	-147508.
dQxy,yx	0	-62118.4
dQyy	0	-33487.2

Driving term by OPA

$$SD = -29.9 \text{ 1/m}^2$$

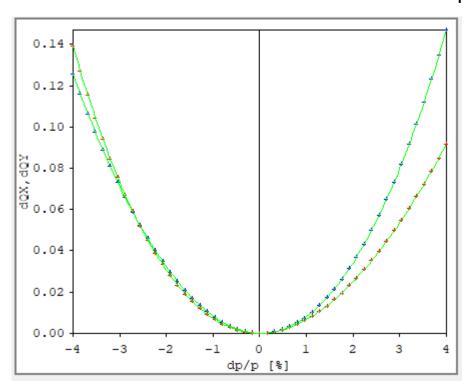
 $SF = 17.0 \text{ 1/m}^2$

Chromaticity compensation – 4 sextupole families:

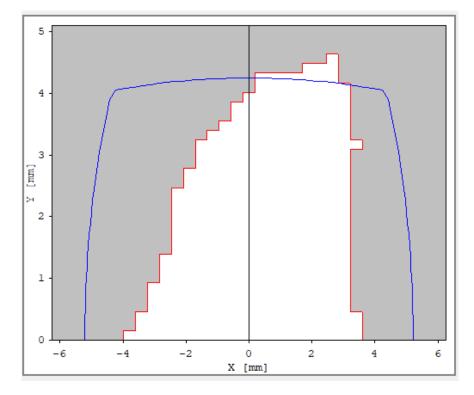
• No harmonic sextupoles, no octupoles

CrX lin	0.00	-0.03
CrY lin	0.00	0.01
Qx	H21000	21.18
3Qx	H30000	7.42
Qx	H10110	6.02
Qx-2Qy	H10020	11.19
Qx+2Qy	H10200	9.46
2Qx	H20001	0.84
2Qy	H00201	0.77
Qx	H10002	0.03
CrX sqr	0.00	64.69
CrY sqr	0.00	76.98
dQxx	0.00	3085.77
dQxy,yx	0.00	8272.42
dQyy	0.00	-33651.98

4 SX-families suppress the TS with momentum as well as the TS with amplitude


$$SD1 = -26.7 \ 1/m^2$$

$$SF1 = 12.6 \ 1/m^2$$


$$SD2 = -39.8 \ 1/m^2$$

$$SF2 = 23.9 \ 1/m^2$$

No harmonic sextupoles, no octupoles

Momentum acceptance 3-4%

Initial dynamic aperture ($\beta_{x,y} = 2.5m$)

Summary and conclusion

- Careful analysis of the substructures of MBA lattices leads to a better understanding of design options
- Promising baseline lattices can be deterministically constructed
- Technical feasibility should be included from the start
- Reducing the sextupole strength in the linear optimization yields promising non-linear properties
- Splitting of chromatic sextupole families is mandatory (≥4)

We are not finished:

- Octupoles and/or harmonic sextupoles
- Tune scan
- All drifts are 0.1m can we improve by variation?
- Need for injection straight? Super-bend?
- •
- MOGA for fine tuning

I'm really sorry that I couldn't join this workshop and I hope that you are having a good time, fruitful discussions, and a great dinner!

I'm looking forward to Paul's report!

Bettina