Machine Learning Techniques for Accelerators

Elena Fol

CERN, BE-ABP-LAF

Many thanks to D. Schulte, C. Rogers, G. Franchetti, R. Tomas and OMC Team

3rd Workshop on Low Emittance Lattice Design - LEL 2022 26th - 29th of June 2022

What does "Machine Learning" mean?

What does "Machine Learning" mean?

What does "Machine Learning" mean?

Strong AI: Should be able to perform any task, indistinguishable from human —> does not exist (yet?)

Narrow AI: Execute specific tasks
 —> outperforms humans in e.g.
 financial forecasting, medical diagnostics

- Machine Learning = a toolkit consisting of many different concepts and mathematical methods
 - ✓ Building solution for specific tasks, without providing explicit instructions

Learning from experience

- Tasks that are extremely easy and obvious for us are difficult to program in traditional ways
- Impossible to learn every possible rule to perform a task
 - > learn from examples instead

Learning from experience

- Tasks that are extremely easy and obvious for us are difficult to program in traditional ways
- Impossible to learn every possible rule to perform a task
 - learn from examples instead

Learning from experience

- Tasks that are extremely easy and obvious for us are difficult to program in traditional ways
- Impossible to learn every possible rule to perform a task
 - > learn from examples instead

Relevant ML concepts and definitions

Supervised Learning

- Input/output pairs available
- Learn a mapping function, generalizing for all provided data
- Predict from unseen data

Unsupervised Learning

- Only input data is given
- Discover structures and patterns

Reinforcement Learning

- No training data
- Interact with an environment
- Trying to learn optimal sequences of decisions

Regression

Classification

Clustering

Learning from data: Supervised Learning

example 1 example 2 example 3

Training input data

Training output data

Learning from data: Supervised Learning

Training output data

Learning from data: Supervised Learning

- **→** Learning <u>from data</u> automatically
- **⇒** Explaining relationship between input and output variables in all training samples.
- **→** Generalisation: the capability of <u>explaining new cases</u>
 - How to prove generalisation?

Training and generalization

Simple models underfit

- Derivate from data (high bias)
- Do not correspond to data structure (low variance)

Training and generalization

Simple models underfit

- Derivate from data (high bias)
- Do not correspond to data structure (low variance)

Complex models overfit

- Very low systematical deviation (low bias)
- Very sensitive to data (high variance)

Training and generalization

- Derivate from data (high bias)
- Do not correspond to data structure (low variance)
- Separate data into train and test sets
- Find optimal model hyperparameter e.g. with cross-validation
- Complex models overfit
 - Very low systematical deviation (low bias)
 - Very sensitive to data (high variance)

Where can we use ML in accelerators?

Detection of instrumentation failures

Beam control and lattice imperfection corrections

Optimization and automation of design and operation

Virtual Diagnostics

- Defining a narrow task (optimization of specific parameters rather than the entire machine)
- > Performance measure of selected model (beam size, pulse energy, ...)
- > e.g. when no analytical solution is available, rapidly changing systems, no direct measurements are possible.

Important to identify where ML can surpass traditional methods

How much effort is needed to implement a ML solution? Is appropriate infrastructure for data acquisition available? Enough resources to perform the training?

Examples: ML for LHC optics measurements and corrections

Detection of faulty Beam Position Monitors

- Faulty BPMs are a-priori unknown: no ground truth → Unsupervised Learning
- Anomaly detection using Isolation Forest algorithm implemented with Scikit-Learn.

Detection of faulty Beam Position Monitors

- Faulty BPMs are a-priori unknown: no ground truth

 Unsupervised Learning
- Anomaly detection using Isolation Forest algorithm implemented with Scikit-Learn.

Harmonic analysis of BPM turn-by- turn data

- Outlier detection based on combination of several signal properties
- Immediate results

E. Fol et al., "Detection of faulty beam position monitors using unsupervised learning", Phys. Rev. Accel. Beams 23, 102805, 2020

LHC Commissioning 2022

- ✓ Statistical analysis of historical data
- ✓ Identified 116 critical faulty BPMs out of more than a thousand BPMs in the LHC.

√~60 BPMs reveal actual instrumentation issues,
which otherwise stay hidden.

Isolation Forest Algorithm

- Forest consists of several decision trees*
- Random splits aiming to "isolate" each point
- The less splits are needed, the more "anomalous"
- Contamination factor: fraction of anomalies to be expected in the given data
 - First obtained empirically from the past measurements
 - → Refined on simulations introducing expected BPM faults.

Conceptual illustration of Isolation Forest algorithm

Isolation Forest Algorithm

- Forest consists of several decision trees*
- Random splits aiming to "isolate" each point
- The less splits are needed, the more "anomalous"
- Contamination factor: fraction of anomalies to be expected in the given data
 - → First obtained empirically from the past measurements
 - → Refined on simulations introducing expected BPM faults.
- Input data: combination of several signal properties obtained from harmonic analysis of BPM turn-by-turn measurements
 - No additional data handling needed.
 - → No training, applied directly on the currently taken measurements data

Correcting the optics

- > What are the actual errors of individual quadrupoles?
- > How to obtain the **full set of errors in one step**?

Estimation of quadrupole errors

Local optics corrections in LHC optics commissioning 2022:

- ~2200 input variables: phase advance deviations from nominal optics
- 32 output targets: triplet quadrupole errors in Interaction Regions

E.Fol et al., "Supervised learning-based reconstruction of magnet errors in circular accelerators", European Physical Journal Plus volume 136, Article number: 365 (2021),

Random Forest Regression

Supervised Learning approach:

- ⇒ generalized model explaining relationship between input and output variables in all training samples.
- → Capturing the "physics": correlation between cooling performance and parameters of the cooling channel.

Decision Trees:

- Partition data based on a sequence of thresholds
- Continuous target y, in region estimate:
- Mean Square Error:

$$c_m = \frac{1}{N_m} \sum_{i \in N_m} y_i$$

$$H(X_m) = \frac{1}{N_m} \sum_{i \in N_m} (y_i - c_m)^2$$

Random Forest:

- Random subset of examples, train separate model on each subset
- Only random subset of features is used at each split
- Increases variance, tend not to overfit

LHC commissioning 2022: predicting local quadrupole errors

Example: Corrections in Interaction Region 1, squeeze to $\beta^* = 30$ cm

→ Correction test propagating the predicted errors within a selected local region:

- ✓ Phase errors can be corrected applying the errors with opposite sign as correction settings
- √ Simultaneous local correction in all IRs within seconds.

Virtual Optics Measurements

Predict advanced optics observables from phase advances:

Virtual Optics Measurements

Predict advanced optics observables from phase advances:

Measuring beta-function in Interaction Regions:

Traditional technique: k-modulation:

- Based on modulation of quadrupole current
- Time consuming
- Accuracy varies depending on tune measurement uncertainty, magnet errors and β^* settings.
- \checkmark β -functions left and right from IPs within a few seconds vs. several minutes for k-modulation
- ✓ Average accuracy: 5 % for β * = 30 cm.

Virtual Optics Measurements

Predict advanced optics observables from phase advances:

Measuring beta-function in Interaction Regions:

Traditional technique: k-modulation:

- Based on modulation of quadrupole current
- Time consuming
- Accuracy varies depending on tune measurement uncertainty, magnet errors and β^* settings.
- \checkmark β -functions left and right from IPs within a few seconds vs. several minutes for k-modulation
- ✓ Average accuracy: 5 % for β * = 30 cm.

Horizontal Dispersion reconstruction:

- Computed by acquiring turn-by- turn data from several beam excitations, shifting the momentum.
- ✓ Simultaneous reconstruction of normalised dispersion in beam 1 and beam 2 requires only a few seconds.
- √ The relative error of prediction is 5% (beam 1) and 7% (beam 2).

Measurement taken during LHC commissioning, $\beta^* = 30$ cm

ML applied to the design of future accelerators: Final Cooling for the Muon Collider

Muon Collider: overview

Technology and challenges of Final Cooling

Ionisation cooling: the only technique that works on the timescale of the muon lifetime

- Muons passing through a material -> energy loss due to the interaction with absorber material
- Reduction of normalised beam emittance
- Re-accelerating the beam to restore the longitudinal momentum

Technology and challenges of Final Cooling

Ionisation cooling: the only technique that works on the timescale of the muon lifetime

- Muons passing through a material -> energy loss due to the interaction with absorber material
- Reduction of normalised beam emittance
- Re-accelerating the beam to restore the longitudinal momentum

Optimization routines executing tracking of thousands of muons at each step

- → How to **speed up** optimization?
- → How to find starting parameters?
- ✓ Application of Supervised Learning to model cooling performance from saved simulation data
- ✓ Inverse models for the initial parameters estimation

Potential speed-up of simulation studies

- > Systematically storing produced simulation data: allows automatic mapping between initial conditions and simulation results
- "Surrogate modelling": models based on existing data (Supervised Learning)

- E. Fol "Evaluation of Machine Learning Methods for LHC Optics Measurements and Corrections Software", CERN-THESIS-2017-336, 2017
- A. Edelen et al. "Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems",
 Phys. Rev. Accel. Beams 23, 044601, 2020

Potential speed-up of simulation studies

- > Systematically storing produced simulation data: allows automatic mapping between initial conditions and simulation results
- > "Surrogate modelling": models based on existing data (Supervised Learning)

1. Speeding up optimization:

- E. Fol "Evaluation of Machine Learning Methods for LHC Optics Measurements and Corrections Software", CERN-THESIS-2017-336, 2017
- A. Edelen et al. "Machine learning for orders of magnitude speedup in multiobjective optimization of particle accelerator systems",
 Phys. Rev. Accel. Beams 23, 044601, 2020

2. "Inverse" design:

Prediction of simulation output

- → Random Forest regressor, 1200 simulations
- → 98.3% accuracy on a test set (300 simulations)

⇒ Evaluate objective function during optimization:

$$\min_{p} \frac{\Delta \epsilon_{\parallel}}{(\Delta \epsilon_{\parallel} \Delta N)} + \bar{\alpha}$$

- ✓ Compute optimization function from ML-model prediction
- ✓ Optimization in a few minutes instead of ~1.5 hours for 200 steps using simulations

Inverted models

• Estimate the initial parameters to achieve a desired cooling performance

<u>Input</u>: Emittance reduction, momentum reduction, transmission <u>Output</u>: required start energy, beta, absorber densities in **2 consecutive cells**

Example: aiming for $\Delta \in =50\%$, $\Delta pz = 60\%$, $\Delta N = 90\%$

- 1. **Predict design parameters**: Ekin = 0.0714GeV, beta = 0.846, absorber densities = 1.3, 1.1
- 2. Tracking using configuration predicted by ML model:

Inverted models

• Estimate the initial parameters to achieve a desired cooling performance

<u>Input</u>: Emittance reduction, momentum reduction, transmission <u>Output</u>: required start energy, beta, absorber densities in **2 consecutive cells**

Example: aiming for $\Delta \epsilon = 50\%$, $\Delta pz = 60\%$, $\Delta N = 90\%$

- 1. Predict design parameters: Ekin = 0.0714GeV, beta = 0.846, absorber densities = 1.3, 1.1
- 2. Tracking using configuration predicted by ML model:

$$\Delta \in = 0.49\%$$
, $\Delta pz = 0.61\%$, $\Delta N = 0.98\%$

→ Warm start for optimization or final solution?

Conclusions

How can we profit from ML?

Accelerators

- Operation
- Diagnostics
- Beam Dynamics Modeling

Which limitations can be solved by ML with reasonable effort?

Machine Learning:

- ✓ Learn arbitrary models
- ✓ Directly from provided data

- > large amount of optimization targets
- > computationally expensive simulations
- > direct measurements are not possible
- > previously unobserved behaviour
- > non-linear interacting sub-systems, rapidly changing environment.

ML in accelerators: summary

	Accelerator Problem	ML methods	Benefits	To be considered
•	Automation of particular components	Supervised techniques for classification: Decision Trees, SVR, Logistic Regression, NN	Saving operation time, reducing human intervention, preventing subjective decisions	Dedicated machine time usually required to collect training data and to fine tune developed methods.
•	Online optimization of several targets which are coupled Unexpected drifts, continuous settings readjustment needed to maintain beam quality	Reinforcement Learning, Bayesian optimization, Gaussian Process, Adaptive Feedback	Simultaneous optimization targeting several beam properties, automatically finding trade-off between optimization targets, allows faster tuning offering more user time.	Ensuring that all important properties are included as optimization targets.
•	Detection of anomalies	Unsupervised methods: clustering, ensembles of decision trees (e.g. Isolation Forest), supervised classification, Recurrent NN for time-series data.	Preventing faults before they appear, no need to define rules/ thresholds, no training is needed and can be directly applied on received data	In unsupervised methods, usually no "ground truth" is available \rightarrow methods can be verified on simulations.

ML in accelerators: summary

	Accelerator Problem	ML methods	Benefits	To be considered
•	Computationally heavy, slow simulations Reconstruct unknown properties from measurements	Supervised Regression models, NN for non-linear problems	Learning underlying physics directly from the data, faster execution	100% realistic simulations are not possible → the model performance will be as good as your data is.
•	Reduction of parameter space e.g. for optimization	Clustering, Feature Importance Analysis using Decision trees	Speed up of available methods, simpler defined problems, easier to interpret	Parameter selection and combination (feature engineering) can have significant impact on ML methods performance
•	Missing or too noisy data	Autoencoder NN	Robust models, data quality	Significant information should not be removed from the signal.

Thank you for your attention!

Back-up slides

Further References

- Machine learning for beam dynamics studies at the CERN Large Hadron Collider https://doi.org/10.1016/j.nima.2020.164652
- Opportunities in Machine Learning for Particle Accelerators https://arxiv.org/abs/1811.03172
- Optimization and Machine Learning for Accelerators (USPAS course)
 https://slaclab.github.io/USPAS_ML/

Final Cooling baseline

- A Gaussian input beam with ε_{\perp} =300 μ m and ε_{\parallel} = 1.5 mm
- For final cooling, the beam momentum is reduced initially to 135 MeV/c
- High-field magnets limited to 25—32 T, and the cooling beam momenta ranged from 135 MeV/c to 70 MeV/c (40 to 20 MeV kinetic energy)
- Cooled to ε_{\perp} = 55 μ m, with ε_{\parallel} = 70 mm and transmission of 50%
- Preferred ε_{\perp} = 25µm, should be possible to achieve with stronger focusing fields, alternative absorber configuration and further optimization.

High field – low energy muon ionization cooling channel Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer Phys. Rev. ST Accel. Beams **18**, 091001 – Published 4 September 2015

Practical advice

- Feature engineering is highly important! Rescaling, denoising, outlier elimination...
 - data vizualisation can help
- Start with simple models (increase the model complexity (e.g. applying Neural Networks) only if really needed.
- Well structured data, extendable architecture of existing frameworks
 - > possibility for the integration of ML tools.
- Estimate model generalization (split into training, test and validation sets)

Frameworks to use:

- Prototyping, fast and easy implementation (very good documentation): http://scikit-learn.org/
- High-level package for Neural Networks: https://keras.io/
- Deep Learning, specific complex model architectures: https://www.tensorflow.org/
 http://deeplearning.net/software/theano/
- Reinforcement Learning: OpenAl Gym https://gym.openai.com/

