
Machine Learning Techniques for Accelerators

Elena Fol 


3rd Workshop on Low Emittance Lattice Design - LEL 2022  
26th - 29th of June 2022

CERN, BE-ABP-LAF

Many thanks to D. Schulte, C. Rogers, G. Franchetti, R. Tomas and OMC Team 



2

What does “Machine Learning” mean?

Neural Networks

Deep Learning

Bayesian 
Optimization

Genetic Algorithms

Artifi



3

What does “Machine Learning” mean?

Neural Networks

Deep Learning

Bayesian 
Optimization

Genetic Algorithms

Artifi

“IF-statements”

Linear Algebra

Interpolation

Statistics Fitting



4

What does “Machine Learning” mean?

• Strong AI: Should be able to 
perform any task,  
indistinguishable from human 
—> does not exist (yet?)


• Narrow AI: Execute specific tasks 
—> outperforms humans in e.g. 
financial forecasting, medical 
diagnostics


• Machine Learning = a toolkit 
consisting of many different 
concepts and mathematical 
methods


✓ Building solution for specific 
tasks, without providing explicit 
instructions

Neural Networks

Deep Learning

Bayesian 
Optimization

Genetic Algorithms

Artifi

“IF-statements”

Linear Algebra

Interpolation

Statistics Fitting



• Tasks that are extremely easy and obvious for us are difficult to program in 
traditional ways


• Impossible to learn every possible rule to perform a task

➢ learn from examples instead
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Cat?

Learning from experience
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Relevant ML concepts and definitions

Supervised Learning Unsupervised Learning

• Input/output pairs available

• Learn a mapping function, generalizing 

for all provided data

• Predict from unseen data 

• Only input data is given

• Discover structures and patterns

Regression Classification Clustering

Reinforcement Learning

• No training data

• Interact with an environment

• Trying to learn optimal sequences of 

decisions
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Learning from data: Supervised Learning

Training input 
data

Training 
output data

example 1

example 2 
example 3

.

.

.
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Learning from data: Supervised Learning

Training input 
data

Function with adjustable  
parameters (weights, bias)

Model 
output

Training 
output data

example 1

example 2 
example 3

.

.

.

𝒚 = 𝒇(∑ 𝒙𝒊𝒘𝒊 + 𝒃)
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Learning from data: Supervised Learning

Training input 
data

Function with adjustable  
parameters (weights, bias)

Model 
output

Training 
output data

Compute the loss  
(approximation error ): 

e.g. Mean Squared Errorexample 1

example 2 
example 3

.

.

.

𝒚 = 𝒇(∑ 𝒙𝒊𝒘𝒊 + 𝒃)

Adjust parametersMinimizing the loss
e.g. Gradient Descent

‣ How to prove generalisation?

➡ Learning from data automatically

➡ Explaining relationship between input and output variables in all training samples.

➡ Generalisation: the capability of explaining new cases
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Training and generalization

Simple models underfit

• Derivate from data (high bias)

• Do not correspond to data structure 

(low variance)
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Complex models overfit

• Very low systematical deviation (low bias)

• Very sensitive to data (high variance) 
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Training and generalization

Simple models underfit

• Derivate from data (high bias)

• Do not correspond to data structure 

(low variance)

! Bias-Variance tradeoff

•Separate data into train and test sets

•Find optimal model hyperparameter e.g. 

with cross-validation

Complex models overfit

• Very low systematical deviation (low bias)

• Very sensitive to data (high variance) 
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Optimization and 
automation of 

design and 
operation

Virtual 
Diagnostics

Beam control  
and lattice 

imperfection 
corrections

Detection of 
instrumentation 

failures

➢ Defining a narrow task (optimization of 
specific parameters rather than the entire 
machine) 

➢ Performance measure of selected model 
(beam size, pulse energy, …) 

➢ e.g. when no analytical solution is 
available, rapidly changing systems,  
no direct measurements are possible.

Where can we use ML in accelerators?

Important to identify where ML can surpass traditional methods

How much effort is needed to implement a ML solution? Is appropriate infrastructure for data 

acquisition available? Enough resources to perform the training?



Examples: ML for LHC optics measurements  
and corrections
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• Faulty BPMs are a-priori unknown: no ground truth ! Unsupervised Learning

• Anomaly detection using Isolation Forest algorithm implemented with Scikit-Learn. 
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Detection of faulty Beam Position Monitors 

Local outliers while global beta-
beating is expected to be uniform

Causes a spike,  
obviously, a bad BPM

Causes a spike, but how to detect 
before computing the optics?



• Faulty BPMs are a-priori unknown: no ground truth ! Unsupervised Learning

• Anomaly detection using Isolation Forest algorithm implemented with Scikit-Learn. 
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Detection of faulty Beam Position Monitors 

Harmonic analysis of BPM  
turn-by- turn data 

Detection of faulty signal  
prior to optics computation

• Outlier detection based on  
combination of several signal properties


• Immediate results

Avoid the appearance of 
erroneous optics computation

LHC Commissioning 2022

✓ Statistical analysis of historical data

✓ Identified 116 critical faulty BPMs out of   

more than a thousand BPMs in the LHC.

✓~60 BPMs reveal actual instrumentation issues,  
which otherwise stay hidden. E. Fol et al., “Detection of faulty beam position monitors using unsupervised 

learning”,  Phys. Rev. Accel. Beams 23, 102805, 2020
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Isolation Forest Algorithm
• Forest consists of several decision trees*

• Random splits aiming to “isolate” each point

• The less splits are needed, the more “anomalous”

• Contamination factor: fraction of anomalies to be 

expected in the given data

! First obtained empirically from the past 
measurements


	 	 ! Refined on simulations introducing  
	 	 expected BPM faults.

 

Conceptual illustration of Isolation Forest algorithm

*Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest.” 
Data Mining, 2008. ICDM‘08. 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Isolation Forest Algorithm
• Forest consists of several decision trees*

• Random splits aiming to “isolate” each point

• The less splits are needed, the more “anomalous”

• Contamination factor: fraction of anomalies to be 

expected in the given data

! First obtained empirically from the past 
measurements


	 	 ! Refined on simulations introducing  
	 	 expected BPM faults.

 

Conceptual illustration of Isolation Forest algorithm

• Input data: combination of several signal 
properties obtained from harmonic analysis of 
BPM turn-by-turn measurements


	 ! No additional data handling needed.


! No training, applied directly on the 
currently taken measurements data


*Liu, Fei Tony, Ting, Kai Ming and Zhou, Zhi-Hua. “Isolation forest.” 
Data Mining, 2008. ICDM‘08. 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Correcting the optics

➢ What are the actual errors of individual quadrupoles?

➢ How to obtain the full set of errors in one step?

Schematic circuit representation

Quad 1 Quad 2 Quad N……

Power 
Supply

Errors 
Δk1 Δk2 ΔkN

Corrections

 Before After

/ 
Δ

𝛽
𝛽

• Corrections are implemented by 
changing the strength of circuits 


• Optics perturbations are caused by  
all individual magnets.



22

Estimation of quadrupole errors

Local optics corrections in LHC optics commissioning 2022:


• ~2200 input variables: phase advance deviations from 
nominal optics


• 32 output targets: triplet quadrupole errors in Interaction 
Regions‣  60 000 training samples,  

Random Forest algorithm

E.Fol et al.,“Supervised learning-based reconstruction of magnet errors in circular 
accelerators”, European Physical Journal Plus volume 136, Article number: 365 (2021) ,
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Random Forest Regression
Supervised Learning approach:

➡  generalized model explaining relationship between input and output variables in all training samples.

➡ Capturing the “physics”: correlation between cooling performance and parameters of the cooling channel.


Decision Trees:

• Partition data based on a sequence of thresholds


• Continuous target y, in region estimate:


• Mean Square Error:


Random Forest:


•  Random subset of examples, train separate model on each subset

•  Only random subset of features is used at each split

•  Increases variance, tend not to overfit 
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LHC commissioning 2022: predicting local quadrupole errors


✓ Phase errors can be corrected applying the 
errors with opposite sign as correction 
settings


✓ Simultaneous local correction in all IRs 
within seconds.

Example: Corrections in Interaction Region 1, squeeze to  𝛽* = 30 cm 

➡   Correction test propagating the predicted errors within a selected local region:
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Virtual Optics Measurements

 

Predict advanced optics observables from phase advances:
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Virtual Optics Measurements

Measuring beta-function in Interaction Regions:

Traditional technique: k-modulation:


• Based on modulation of 
quadrupole current


• Time consuming

• Accuracy varies depending on tune 

measurement uncertainty, magnet 
errors and 𝛽* settings. 

✓ 𝛽-functions left and right from IPs within a few seconds vs. 
several minutes for k-modulation


✓ Average accuracy: 5 % for 𝛽* = 30 cm. 

 

Predict advanced optics observables from phase advances:
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Virtual Optics Measurements

Measuring beta-function in Interaction Regions:

Traditional technique: k-modulation:


• Based on modulation of 
quadrupole current


• Time consuming

• Accuracy varies depending on tune 

measurement uncertainty, magnet 
errors and 𝛽* settings. 

✓ 𝛽-functions left and right from IPs within a few seconds vs. 
several minutes for k-modulation


✓ Average accuracy: 5 % for 𝛽* = 30 cm. 

 

Predict advanced optics observables from phase advances: Horizontal Dispersion reconstruction:

• Computed by acquiring turn-by- turn data 
from several beam excitations, shifting the 
momentum. 

✓   Simultaneous reconstruction of normalised dispersion 
in beam 1 and beam 2 requires only a few seconds.


✓   The relative error of prediction is 5% (beam 1 )  
and 7% (beam 2).

Measurement taken during LHC commissioning, 𝛽* = 30 cm



ML applied to the design of future accelerators: 
Final Cooling for the Muon Collider
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Muon Collider: overview

Short intense 
proton bunch 
sent on the 
target

Interaction with the target 
produces pions


➡ decay into muons

Muons are captured 
and cooled to lower 
emittance

Acceleration to high 
collision energy

[1]: https://muoncollider.web.cern.ch
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Technology and challenges of Final Cooling
Ionisation cooling: the only technique that works on the timescale of the muon lifetime

• Muons passing through a material —> energy loss due to the interaction with absorber material

• Reduction of normalised beam emittance 

• Re-accelerating the beam to restore the longitudinal momentum
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Technology and challenges of Final Cooling
Ionisation cooling: the only technique that works on the timescale of the muon lifetime

• Muons passing through a material —> energy loss due to the interaction with absorber material

• Reduction of normalised beam emittance 

• Re-accelerating the beam to restore the longitudinal momentum

Optimization routines executing tracking of thousands of muons at each step

! How to speed up optimization?

! How to find starting parameters?


✓ Application of Supervised Learning to model cooling performance from saved simulation data

✓ Inverse models for the initial parameters estimation
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Potential speed-up of simulation studies
➢ Systematically storing produced simulation data: 

allows automatic mapping between initial conditions and simulation results

➢ “Surrogate modelling”: models based on existing data (Supervised Learning)

• E. Fol „Evaluation of Machine Learning 
Methods for LHC Optics Measurements 
and Corrections Software“,  
CERN-THESIS-2017-336, 2017

• A. Edelen et al. „Machine learning for orders of 
magnitude speedup in multiobjective optimization of 
particle accelerator systems“ , 
Phys. Rev. Accel. Beams 23, 044601, 2020
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Potential speed-up of simulation studies
➢ Systematically storing produced simulation data: 

allows automatic mapping between initial conditions and simulation results

➢ “Surrogate modelling”: models based on existing data (Supervised Learning)

1. Speeding up optimization: 2. “Inverse” design:

• E. Fol „Evaluation of Machine Learning 
Methods for LHC Optics Measurements 
and Corrections Software“,  
CERN-THESIS-2017-336, 2017

• A. Edelen et al. „Machine learning for orders of 
magnitude speedup in multiobjective optimization of 
particle accelerator systems“ , 
Phys. Rev. Accel. Beams 23, 044601, 2020
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Prediction of simulation output
➡ Random Forest regressor, 1200 simulations

➡ 98.3% accuracy on a test set (300 simulations)


✓ Compute optimization function from ML-model prediction

✓ Optimization in a few minutes instead of ~1.5 hours for 

200 steps using simulations

➡ Evaluate objective function during optimization: 


min
p

Δϵ∥

(Δϵ⊥ΔN)
+ ᾱ
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Inverted models

• Estimate the initial parameters to achieve a desired cooling performance


Input: Emittance reduction, momentum reduction, transmission  
Output: required start energy, beta, absorber densities in 2 consecutive cells


Example:  aiming for   Δϵ=50%, Δpz = 60%,  ΔN=90%


 
	

1.  Predict design parameters: Ekin = 0.0714GeV, beta = 0.846, absorber densities = 1.3, 1.1


2. Tracking using configuration predicted by ML model:
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Inverted models

• Estimate the initial parameters to achieve a desired cooling performance


Input: Emittance reduction, momentum reduction, transmission  
Output: required start energy, beta, absorber densities in 2 consecutive cells


Example:  aiming for   Δϵ=50%, Δpz = 60%,  ΔN=90%


 
	

1.  Predict design parameters: Ekin = 0.0714GeV, beta = 0.846, absorber densities = 1.3, 1.1


2. Tracking using configuration predicted by ML model:

➡  Warm start for optimization or final solution?

  Δϵ=0.49%, Δpz = 0.61%,  ΔN=0.98%



Conclusions
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Accelerators

• Operation

• Diagnostics

• Beam Dynamics Modeling
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Which limitations can be solved by ML 
with reasonable effort?

➢ large amount of optimization targets

➢ computationally expensive simulations

➢ direct measurements are not possible

➢ previously unobserved behaviour

➢ non-linear interacting sub-systems, rapidly changing environment. 

Machine Learning:

✓ Learn arbitrary models

✓ Directly from provided data

How can we profit from ML?
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ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

• Automation of particular 
components 

Supervised techniques for 
classification: Decision Trees, SVR, 

Logistic Regression, NN

Saving operation time, reducing 
human intervention, preventing 

subjective decisions

Dedicated machine time usually 
required to collect training data 

and to fine tune developed 
methods.

• Online optimization of several 
targets which are coupled


• Unexpected drifts, continuous 
settings readjustment needed 
to maintain beam quality

 
Reinforcement Learning,

Bayesian optimization,


Gaussian Process,

Adaptive Feedback

Simultaneous optimization 
targeting several beam properties, 

automatically finding trade-off 
between optimization targets, 

allows faster tuning offering more 
user time.

Ensuring that all important  
properties are included as 

optimization targets.

• Detection of anomalies Unsupervised methods: clustering, 
ensembles of decision trees (e.g. 

Isolation Forest), supervised 
classification, Recurrent NN for 

time-series data.

Preventing faults before they 
appear, no need to define rules/ 

thresholds,

no training is needed and can be 
directly applied on received data

In unsupervised methods, usually 
no “ground truth” is available ! 

methods can be verified on 
simulations.
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ML in accelerators: summary

Accelerator Problem ML methods Benefits To be considered

• Computationally heavy, slow 
simulations


• Reconstruct unknown 
properties from 
measurements

 
Supervised Regression models, 

NN for non-linear problems

Learning underlying physics directly 
from the data, faster execution

100% realistic simulations are 
not possible ! the model 
performance will be as good 

as your data is.

• Reduction of parameter space 
e.g. for optimization

Clustering, Feature Importance 
Analysis using Decision trees

Speed up of available methods, 
simpler defined problems, easier to 

interpret

Parameter selection and 
combination (feature 
engineering) can have 

significant impact on ML 
methods performance

• Missing or too noisy data Autoencoder NN Robust models, data quality Significant information should 
not be removed from the 

signal.



Thank you for your attention! 
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Cat!



Back-up slides
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• Machine learning for beam dynamics studies at the CERN Large Hadron Collider  
https://doi.org/10.1016/j.nima.2020.164652

• Opportunities in Machine Learning for Particle Accelerators 
https://arxiv.org/abs/1811.03172

• Optimization and Machine Learning for Accelerators (USPAS course) 
https://slaclab.github.io/USPAS_ML/

Further References

https://doi.org/10.1016/j.nima.2020.164652
https://arxiv.org/abs/1811.03172


• A Gaussian input beam with ε┴=300 μm and ε║ = 1.5mm

• For final cooling, the beam momentum is reduced initially to 135 MeV/c 


• High-field magnets limited to 25—32 T, and the cooling beam momenta ranged from 135 MeV/c to 70 MeV/c (40 to 20 
MeV kinetic energy)


• Cooled to ε┴ = 55 μm,  with ε║ = 70 mm and  transmission of 50%


• Preferred  ε┴ = 25μm, should be possible to achieve with stronger focusing fields, alternative absorber configuration 
and further optimization.

High field – low energy muon ionization cooling channel

Hisham Kamal Sayed, Robert B. Palmer, and David Neuffer

Phys. Rev. ST Accel. Beams 18, 091001 – Published 4 September 2015

Final Cooling baseline



Frameworks to use:
• Prototyping, fast and easy implementation (very good documentation):   

http://scikit-learn.org/   
• High-level package for Neural Networks: – https://keras.io/ 
• Deep Learning, specific complex model architectures:   

https://www.tensorflow.org/   
http://deeplearning.net/software/theano/ 

• Reinforcement Learning: OpenAI Gym https://gym.openai.com/
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Practical advice
• Feature engineering is highly important! Rescaling, denoising, outlier elimination...

➢ data vizualisation can help

• Start with simple models (increase the model complexity (e.g. applying Neural Networks) only if really needed.

• Well structured data, extendable architecture of existing frameworks 

! possibility for the integration of ML tools.
• Estimate model generalization (split into training, test and validation sets)

http://scikit-learn.org/
https://keras.io/
https://www.tensorflow.org/
http://deeplearning.net/software/theano/
https://gym.openai.com/

